Popular Posts Today

Diberdayakan oleh Blogger.

Adolescent male chimps in large community strive to be alphas

Written By empapat on Kamis, 20 September 2012 | 07.43

ScienceDaily (Sep. 19, 2012) — An Ohio University anthropologist reports the first observation of dominance relationships among adolescent male chimpanzees, which he attributes to the composition of their community. Hogan Sherrow spent eight years studying the Ngogo community of chimpanzees in Kibale National Park in western Uganda. Ngogo is the biggest chimpanzee community on record, with more than 150 members and about twice as many males as found in other chimp communities across Africa.

Unlike their adult male counterparts, which have a well-documented dominance hierarchy, adolescent males have not been known to establish dominance relationships. During four field seasons between 2000 and 2004, however, Sherrow found that some adolescent males pant grunted to other adolescent males on a consistent basis. Research by Jane Goodall established that pant grunts are made by subordinate individuals to dominant ones, Sherrow explained.

"It calms hostilities. It means, 'I know that you're stronger than me, so don't beat me up.' It's like they're sending up the white flag," said Sherrow, an assistant professor of anthropology who published his recent findings in the journal Folia Primatologica.

After ranking the 17 adolescent males in order of dominance, Sherrow concluded that the biggest and oldest animals were at the top of the hierarchy. There were only two exceptions, males that appeared to act in a subordinate manner due to physical injuries.

Sherrow suggests that he observed dominance relationships in the adolescent males of this chimpanzee community due to its size and heightened competition for females. Each male in Ngogo must contend with 35 to 40 others, whereas most communities contain 10 to 15 competitors for mating. Adolescent male chimps also may vie for access to high-ranking adult males as a competitive strategy.

Adult male chimpanzees have clear and defined dominance relationships that depend on size, strength and the ability to form alliances in the community. The most dominant males have priority access to resources and potential mates and usually father more offspring.

"We should not be surprised that adolescent males can form these dominance relationships. Adults males form them, and adolescent males need to learn them at some point," Sherrow said.

Studies of other immature males in primate, mammal and even human communities with intense competition for resources also have found adolescent dominance hierarchies, he added.

Because the Ngogo community is unusually large, Sherrow noted that scientists should seek to observe this behavior in another neighboring community of this size to determine if a similar hierarchy can be documented. The Ngogo study site, located in the Ugandan rain forest, was established in 1995 and has been observed daily by researchers.

The recent study not only offers a new view of chimpanzee behavior, but could shed light on human power and dominance as well, Sherrow suggested.

"Because chimpanzees, along with bonobos, are our closest living relatives, understanding things like how and why they form dominance relationships helps us understand the drive for status and prestige in humans," he said.

The L.S.B. Leakey Foundation, the American Society of Primatologists, the Sigma Xi Foundation, the John F. Enders Foundation and Yale University provided support for the research.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Ohio University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Hogan M. Sherrow. Adolescent Male Chimpanzees at Ngogo, Kibale National Park, Uganda, Have Decided Dominance Relationships. Folia Primatologica, 2012; 83 (2): 67 DOI: 10.1159/000341168

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/UX94_0bMXmc/120920095326.htm
--
Manage subscription | Powered by rssforward.com
07.43 | 0 komentar | Read More

Invisible plastic particles in seawater damaging to sea animals

ScienceDaily (Sep. 20, 2012) — Plastic nanoparticles in seawater can have an adverse effect on sea organisms. Particles measuring about a thirty millionth of a millimetre, and therefore invisible to the naked eye, are responsible. Mussels that have been exposed to such particles eat less, and thus grow less well, according to research carried out by scientists and students at Wageningen University and IMARES, both part of Wageningen UR. They wrote about their research in the most recent issue of Environmental Toxicology and Chemistry.

The presence of 'plastic soup' in the oceans is regarded as a big problem. Tiny plastic particles enter the sea when plastic debris decomposes. Such particles are probably also released from cosmetics and from clothes in the wash, subsequently entering the sewage system and surface waters and eventually reaching the sea.

The EU and the Dutch government recognise the problem and the need to monitor the existence of plastics in the seas in order to learn more about present and future concentrations of plastic micro- and nanoparticles in marine environments. Very little is known about the effects plastic nanoparticles have on sea life. The effects now discovered do not yet prove that plastic in the North Sea is a big problem, but they do suggest that further research is extremely important, the researchers remark.

Professor Bart Koelmans' research team, from Wageningen University and IMARES, exposed mussels to various concentrations of nanoplastic in order to discover the concentration at which an effect was noticeable. The team also varied the quantity of algae -- the normal food source for mussels. By giving the plastic nanoparticles colour, and by measuring them using dynamic light scattering, it was possible to determine the particle concentration that exerted an effect. The researchers described in their publication that the extent to which the tiny plastic particles clump together is also extremely important for understanding particle uptake and the resulting effects in marine organisms. "It means that those effects are not easy to predict because the biological availability of the particles can differ enormously from one organism to another, and because variation in water quality also plays a role," says Prof. Koelmans.

Four research studies

This publication is the first of four by Wageningen University and IMARES into the effects of plastic in the North Sea. The other studies will be published in the near future. The first of these is research into the effect of plastic on lugworms, which lose weight due to uptake of plastic particles. The worms, as a result, take in more toxic substances such as polychlorinated biphenyls (PCBs), which bind to plastics.

The researchers believe this indicates the need for good research into other toxic substances that bind to plastic -- an additional consequence of the presence of microplastics. In order to analyse the interaction of plastic and other toxic substances in the food web, Koelmans' group has made a detailed computer model. This type of model is crucial for estimating the risks plastics impose in the sea. The last piece of research is into plastic debris in the stomachs of fish. An analysis of hundreds of fish has shown that 12% of them have debris in their stomachs. Around half of that debris is plastic.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Wageningen University and Research Centre.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. A. Wegner, E. Besseling, E.M. Foekema, P. Kamermans, A.A. Koelmans. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environmental Toxicology and Chemistry, 2012; DOI: 10.1002/etc.1984

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/QFWf-GX1xoo/120920082526.htm
--
Manage subscription | Powered by rssforward.com
06.44 | 0 komentar | Read More

Humans were already recycling 13,000 years ago, burnt artifacts show

ScienceDaily (Sep. 20, 2012) — A study at the Universitat Rovira i Virgili and the Catalan Institute of Human Paleoecology and Social Evolution (IPHES) reveals that humans from the Upper Palaeolithic Age recycled their stone artefacts to be put to other uses. The study is based on burnt artefacts found in the Molí del Salt site in Tarragona, Spain.

The recycling of stone tools during Prehistoric times has hardly been dealt with due to the difficulties in verifying such practices in archaeological records. Nonetheless, it is possible to find some evidence, as demonstrated in a study published in the 'Journal of Archaeological Science'.

"In order to identify the recycling, it is necessary to differentiate the two stages of the manipulation sequence of an object: the moment before it is altered and the moment after. The two are separated by an interval in which the artefact has undergone some form of alteration. This is the first time a systematic study of this type has been performed," as explained to SINC by Manuel Vaquero, researcher at the Universitat Rovira i Virgili.

The archaeologists found a high percentage of burnt remains in the Molí del Salt site (Tarragona), which date back to the end of the Upper Palaeolithic Age some 13,000 years ago. The expert ensures that "we chose these burnt artefacts because they can tell us in a very simple way whether they have been modified after being exposed to fire."

The results indicate that the recycling of tools was normal during the Upper Palaeolithic Age. However, this practice is not documented in the same way as other types of artefacts. The use of recycled tools was more common for domestic activities and seems to be associated with immediate needs.

Recycling domestic tools

Recycling is linked to expedited behaviour, which means simply shaped and quickly available tools as and when the need arises. Tools used for hunting, like projectile points for instance, were almost never made from recycled artefacts. In contrast, double artefacts (those that combine two tools within the same item) were recycled more often.

"This indicates that a large part of these tools were not conceived from the outset as double artefacts but a single tool was made first and a second was added later when the artefact was recycled," outlines the researcher. The history of the artefacts and the sequence of changes that they have undergone over time are fundamental in understanding their final morphology.

According to Vaquero, "in terms of the objects, this is mostly important from a cultural value point of view, especially in periods like the Upper Palaeolithic Age, in which it is thought that the sharper the object the sharper the mind."

Sustainable practices with natural resources

Recycling could have been determinant in hunter-gatherer populations during the Palaeolithic Age if we consider the behaviour of current indigenous populations nowadays.

"It bears economic importance too, since it would have increased the availability of lithic resources, especially during times of scarcity. In addition, it is a relevant factor for interpreting sites because they become not just places to live but also places of resource provision," states the researcher.

Reusing resources meant that these humans did not have to move around to find raw materials to make their tools, a task that could have taken them far away from camp. "They would simply take an artefact abandoned by those groups who previously inhabited the site."

Vaquero and the team believe that this practice needs to be borne in mind when analysing the site. "Those populating these areas could have moved objects from where they were originally located. They even could have dug up or removed sediments in search of tools," highlights the researcher.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Plataforma SINC, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Manuel Vaquero, Susana Alonso, Sergio García-Catalán, Angélica García-Hernández, Bruno Gómez de Soler, David Rettig, María Soto. Temporal nature and recycling of Upper Paleolithic artifacts: the burned tools from the Molí del Salt site (Vimbodí i Poblet, northeastern Spain). Journal of Archaeological Science, 2012; 39 (8): 2785 DOI: 10.1016/j.jas.2012.04.024

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/WwrQ7wAqIHw/120920082536.htm
--
Manage subscription | Powered by rssforward.com
06.44 | 0 komentar | Read More

Invasive 'Rasberry Crazy Ant' in Texas now identified species

ScienceDaily (Sep. 19, 2012) — The Rasberry Crazy Ant is an invasive ant that was first noticed infesting areas around Houston, Texas ten years ago, but its species identity has remained undetermined until now.

In a paper published Sept. 19 in the open access journal PLOS ONE, a research team led by John LaPolla from Towson University in Maryland identifies the species as Nylanderia fulva. Identifying the species should help control this emerging pest, the authors write.

They also conclude that the species, whose common name comes from exterminator Tom Rasberry who first noticed the ants, is distributed more widely than previously thought and has likely invaded all Gulf Coast states.

"This study demonstrates the invaluable role that taxonomy, an often underappreciated discipline, plays in our understanding of emerging pests. Now that we know just what species the Rasberry Crazy Ant really is, we can better understand its biology to improve control of this invasive species," says LaPolla.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Public Library of Science.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Dietrich Gotzek, Seán G. Brady, Robert J. Kallal, John S. LaPolla. The Importance of Using Multiple Approaches for Identifying Emerging Invasive Species: The Case of the Rasberry Crazy Ant in the United States. PLoS ONE, 2012; 7 (9): e45314 DOI: 10.1371/journal.pone.0045314

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/_qgkPPZk8H8/120919190918.htm
--
Manage subscription | Powered by rssforward.com
06.14 | 0 komentar | Read More

New way proposed to save Africa's beleaguered soils

Written By empapat on Rabu, 19 September 2012 | 18.23

ScienceDaily (Sep. 19, 2012) — A Washington State University researcher and colleagues make a case in the journal Nature for a new type of agriculture that could restore the beleaguered soils of Africa and help the continent feed itself in the coming decades.

Their system, which they call "perenniation," mixes food crops with trees and perennial plants, which live for two years or more. Thousands of farmers are already trying variations of perenniation, which reduces the need for artificial inputs while improving soil and in some cases dramatically increasing yields. One woman quadrupled her corn crop, letting her raise pigs and goats and sell surplus grain for essentials and her grandchildren's school fees.

John Reganold, a WSU soil scientist, wrote the article with Jerry Glover of the USAID Bureau for Food Security and Cindy Cox of the International Food Policy Research Institute. The article, "Plant perennials to save Africa's soils," appears in the Sept. 20 issue of Nature.

The authors argue that perenniation offers a powerful option as the world's growing population poses new challenges for people struggling to eat. Already, one-fourth of the world's undernourished population lives in sub-Saharan Africa, where nutrient-poor soils have yields that are one-tenth of the U.S. Midwest. Farmers often make these lands worse by adding conventional mineral fertilizers without organic inputs.

"Of the various factors needing urgent attention to increase agricultural productivity, scientists from the region have identified soil quality as a top priority," the researchers write. "We believe that perenniation should be used much more widely to help farmers to meet the challenge of improving soils while increasing food production."

Several efforts to increase perenniation are already underway, including perennial grain research at WSU and millions of plantings across sub-Saharan Africa in the Trees for Food Security project. But the researchers argue for elevating perenniation research to the levels of support given mineral fertilizers and seed development.

The cost could run to tens of millions of dollars.

"Yet such numbers pale in comparison to the losses of nitrogen, phosphorus and potassium from sub-Saharan farm fields each year," the researchers say. Such losses, they add, are the equivalent of billions of dollars of fertilizer.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Washington State University, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Jerry D. Glover, John P. Reganold, Cindy M. Cox. Agriculture: Plant perennials to save Africa's soils. Nature, 2012; 489 (7416): 359 DOI: 10.1038/489359a

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/yB5sW94QEqo/120919135314.htm
--
Manage subscription | Powered by rssforward.com
18.23 | 0 komentar | Read More

Oyster genome uncover the stress adaptation and complexity of shell formation

ScienceDaily (Sep. 19, 2012) — An international research team, led by Institute of Oceanology of Chinese Academy of Sciences and BGI, has completed the sequencing, assembly and analysis of Pacific oyster (Crassostrea gigas) genome -- the first mollusk genome to be sequenced -- that will help to fill a void in our understanding of the species-rich but poorly explored mollusc family. The study, published online September 19 in Nature, reveals the unique adaptations of oysters to highly stressful environment and the complexity mechanism of shell formation.

"The accomplishment is a major breakthrough in the international Conchological research, with great advancement in the fields of Conchology and Marine Biology." said, Professor Fusui Zhang, Academician of Chinese Academy of Sciences, and a well-known Chinese Scientist of Conchology, "The study will provide valuable resources for studying the biology and genetic improvement of molluscs and other marine species. "

Oysters are a soft-bodied invertebrate with a double-hinged shell, which make up an essential part of many aquatic ecosystems. They have a global distribution and for many years they have much higher annual production than any other freshwater or marine organisms. In addition to its economic and ecological importance, the unique biological characteristics of oyster make it an important model for studying marine adaptations, inducing a great deal of biological and genomics research. The completed sequencing of oyster genome will provide a new horizon into understanding its natural mechanisms such as the adaptations to environmental stresses and shell formation, better exploration of marine gene resource, , among others.

Unlike many mammals and social insects, oyster as well as many other marine invertebrates is known to be highly polymorphism, which is a challenge for de novo assembling based on current strategies. In this study, researchers sequenced and assembled the Pacific oyster genome using a combination of short reads and a "Divide and Conquer" fosmid-pooling strategy. This is a novel approach developed by BGI, which can be used to study the genomes with high level of heterozygosity and/or repetitive sequences. After data process, the assembled oyster genome size is about 559 Mb, with a total of ~28,000 genes.

Based on the genomic and transcriptomic analysis results, researchers uncovered an extensive set of genes that allow oysters to adapt and cope with environmental stresses, such as temperature variation and changes in salinity, air exposure and heavy metals. For example, the expansion of heat shock protein 70 (HSP 70) may help explain why Pacific oyster can tolerate high temperatures as HSP family is expanded and highly expressed when in high temperature. The expansion of inhibitors of apoptosis proteins (IAPs), along with other findings, suggested that a powerful anti-apoptosis system exists and may be critical for oyster's amazing endurance to air exposure and other stresses. One notable finding on development is that the oyster Hox gene cluster was broken, and there are unusual gene losses and expansions of the TALE and PRD classes. Hox genes are essential and play critical important role in body plan, the Hox clusters are found to be more conserved in many organisms.

Researchers found paralogs might have the function to change the gene expression for better coping with the stresses. This result suggested that expansion and selective retention of duplicated defense-related genes are probably important to oyster's adaptation. Moreover, many immune-related genes were highly expressed in the digestive gland of the oyster, which indicated its digestive system was an important first-line defense organ against pathogens for the filter-feeder. The shell provides a strong protection against predation and desiccation in sessile marine animals such as oysters. At present, two models have been proposed for molluscan shell formation, but neither of them is accurate enough.

In this study, by sequencing the peptides in the shell, researchers identified 259 shell proteins, and further analysis revealed that shell formation was a far more complex process than previously thought. They found many diverse proteins may play important roles in matrix construction and modification. The typical ECM proteins such as Laminin and some collagens were highly expressed in shells, suggesting that shell matrix has similarities to the ECM of animal connective tissues and basal lamina. Hemocytes may mediate fibronectin (FN)-like fibril formation in the shell matrix as they do in ECM. Furthermore, the functional diversity of proteins showed that the cells and exosome may participate in the shell formation.

Xiaodong Fang, Primary Investigator of this project at BGI, said, "The assembly approach of Oyster genome opens a new way for researchers to better crack the genomes with high-heterozygosity and high-polymorphism. The Oyster genome sheds insights into the comprehensive understanding of mollusc genomes or even lophotrochozoa genomes at the whole genome-wide level, with focuses on the studies of diversity, evolutionary adaptive mechanisms, developmental biology as well as genomics-assisted breeding. "

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by BGI Shenzhen, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Guofan Zhang, Xiaodong Fang, Ximing Guo, Li Li, Ruibang Luo, Fei Xu, Pengcheng Yang, Linlin Zhang, Xiaotong Wang, Haigang Qi, Zhiqiang Xiong, Huayong Que, Yinlong Xie, Peter W. H. Holland, Jordi Paps, Yabing Zhu, Fucun Wu, Yuanxin Chen, Jiafeng Wang, Chunfang Peng, Jie Meng, Lan Yang, Jun Liu, Bo Wen, Na Zhang, Zhiyong Huang, Qihui Zhu, Yue Feng, Andrew Mount, Dennis Hedgecock, Zhe Xu, Yunjie Liu, Tomislav Domazet-Lošo, Yishuai Du, Xiaoqing Sun, Shoudu Zhang, Binghang Liu, Peizhou Cheng, Xuanting Jiang, Juan Li, Dingding Fan, Wei Wang, Wenjing Fu, Tong Wang, Bo Wang, Jibiao Zhang, Zhiyu Peng, Yingxiang Li, Na Li, Jinpeng Wang, Maoshan Chen, Yan He, Fengji Tan, Xiaorui Song, Qiumei Zheng, Ronglian Huang, Hailong Yang, Xuedi Du, Li Chen, Mei Yang, Patrick M. Gaffney, Shan Wang, Longhai Luo, Zhicai She, Yao Ming, Wen Huang, Shu Zhang, Baoyu Huang, Yong Zhang, Tao Qu, Peixiang Ni, Guoying Miao, Junyi Wang, Qiang Wang, Christian E. W. Steinberg, Haiyan Wang, Ning Li, Lumin Qian, Guojie Zhang, Yingrui Li, Huanming Yang, Xiao Liu, Jian Wang, Ye Yin, Jun Wang. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012; DOI: 10.1038/nature11413

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/1eb9R3uqPh4/120919135320.htm
--
Manage subscription | Powered by rssforward.com
17.56 | 0 komentar | Read More

Climate change to fuel northern spread of avian malaria: Malaria already found in birds in Alaska

ScienceDaily (Sep. 19, 2012) — Malaria has been found in birds in parts of Alaska, and global climate change will drive it even farther north, according to a new study published September 19 in the journal PLoS ONE.

The spread could prove devastating to arctic bird species that have never encountered the disease and thus have no resistance to it, said San Francisco State University Associate Professor of Biology Ravinder Sehgal, one of the study's co-authors. It may also help scientists understand the effects of climate change on the spread of human malaria, which is caused by a similar parasite.

Researchers examined blood samples from birds collected at four sites of varying latitude, with Anchorage as a southern point, Denali and Fairbanks as middle points and Coldfoot as a northern point, roughly 600 miles north of Anchorage. They found infected birds in Anchorage and Fairbanks but not in Coldfoot.

Using satellite imagery and other data, researchers were able to predict how environments will change due to global warming -- and where malaria parasites will be able to survive in the future. They found that by 2080, the disease will have spread north to Coldfoot and beyond.

"Right now, there's no avian malaria above latitude 64 degrees, but in the future, with global warming, that will certainly change," Sehgal said. The northerly spread is alarming, he added, because there are species in the North American arctic that have never been exposed to the disease and may be highly susceptible to it.

"For example, penguins in zoos die when they get malaria, because far southern birds have not been exposed to malaria and thus have not developed any resistance to it," he said. "There are birds in the north, such as snowy owls or gyrfalcons, that could experience the same thing."

The study's lead author is Claire Loiseau, a former postdoctoral fellow in Sehgal's laboratory at SF State. Ryan Harrigan, a postdoctoral scholar at the University of California, Los Angeles, provided data modeling for the project. The research was funded by grants from the AXA Foundation and National Geographic.

Researchers are still unsure how the disease is being spread in Alaska and are currently collecting additional data to determine which mosquito species are transmitting the Plasmodium parasites that cause malaria.

The data may also indicate if and how malaria in humans will spread northward. Modern medicine makes it difficult to track the natural spread of the disease, Sehgal said, but monitoring birds may provide clues as to how global climate change may effect the spread of human malaria.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by San Francisco State University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Claire Loiseau, Ryan J. Harrigan, Anthony J. Cornel, Sue L. Guers, Molly Dodge, Timothy Marzec, Jenny S. Carlson, Bruce Seppi, Ravinder N. M. Sehgal. First Evidence and Predictions of Plasmodium Transmission in Alaskan Bird Populations. PLoS ONE, 2012; 7 (9): e44729 DOI: 10.1371/journal.pone.0044729

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/yXz14X5I-XY/120919190602.htm
--
Manage subscription | Powered by rssforward.com
17.23 | 0 komentar | Read More

Genetic mutation may have allowed early humans to migrate throughout Africa

ScienceDaily (Sep. 19, 2012) — A genetic mutation that occurred thousands of years ago might be the answer to how early humans were able to move from central Africa and across the continent in what has been called "the great expansion," according to new research from Wake Forest Baptist Medical Center.

By analyzing genetic sequence variation patterns in different populations around the world, three teams of scientists from Wake Forest Baptist, Johns Hopkins University School of Medicine and the University of Washington School of Medicine, Seattle, demonstrated that a critical genetic variant arose in a key gene cluster on chromosome 11, known as the fatty acid desaturase cluster or FADS, more than 85,000 years ago. This variation would have allowed early humans to convert plant-based polyunsaturated fatty acids (PUFAs) to brain PUFAs necessary for increased brain size, complexity and function. The FADS cluster plays a critical role in determining how effectively medium-chain PUFAs found in plants are converted to the long-chain PUFAs found in the brain.

This research is published online today in PLOS ONE.

Archeological and genetic studies suggest that homo sapiens appeared approximately 180,000 years ago, but stayed in one location around bodies of water in central Africa for almost 100,000 years. Senior author Floyd H. "Ski" Chilton, Ph.D., professor of physiology and pharmacology and director of the Center for Botanical Lipids and Inflammatory Disease Prevention at Wake Forest Baptist, and others have hypothesized that this location was critical, in part, because early humans needed large amounts of the long-chain PUFA docosahexaenoic acid (DHA), which is found in shellfish and fish, to support complex brain function.

"This may have kept early humans tethered to the water in central Africa where there was a constant food source of DHA," Chilton said. "There has been considerable debate on how early humans were able to obtain sufficient DHA necessary to maintain brain size and complexity. It's amazing to think we may have uncovered the region of genetic variation that arose about the time that early humans moved out of this central region in what has been called the 'great expansion.'"

Once this trait arose, the study shows that it was under intense selective pressure and thus rapidly spread throughout the population of the entire African continent. "The power of genetics continually impresses me, and I find it remarkable that we can make inferences about things that happened tens of thousands of years ago by studying patterns of genetic variation that exist in contemporary populations," said Joshua M. Akey, Ph.D., lead scientist at the University of Washington.

This conversion meant that early humans didn't have to rely on just one food source, fish, for brain growth and development. This may have been particularly important because the genetic variant arose before organized hunting and fishing could have provided more reliable sources of long-chain PUFAs, Akey said.

To investigate the evolutionary forces shaping patterns of variation in the FADS gene cluster in geographically diverse populations, the researchers analyzed 1,092 individuals representing 15 different human populations that were sequenced as part of the 1000 Genome Project and 1,043 individuals from 52 populations from the Human Genome Diversity Panel database. They focused on the FADS cluster because they knew those genes code for the enzymatic steps in long-chain PUFA synthesis that are the least efficient.

Chilton said the findings were possible because of the collaboration of internationally recognized scientists from three distinct and diverse disciplines -- fatty acid biochemistry (Wake Forest Baptist), statistical genetics (Johns Hopkins) and population genetics (University of Washington). This new information builds on Chilton's 2011 research findings published in BMC Genetics that showed how people of African descent have a much higher frequency of the gene variants that convert plant-based medium-chain omega-6 PUFAs found in cooking oils and processed foods to long-chain PUFAs that cause inflammation. Compared to Caucasians, African Americans in the United States have much higher rates of hypertension, type 2 diabetes, stroke, coronary heart disease and certain types of cancer. "The current observation provides another important clue as to why diverse racial and ethnic populations likely respond differently to the modern western diet," Chilton said.

This research was supported by National Institutes of Health grants, P50 AT002782 and a Clinical and Translational Science Award grant to The Johns Hopkins Medical Institutions. Additional support was received from the Wake Forest Health Sciences Center for Public Health Genomics. Additional support came from the Mary Beryl Patch Turnbull Scholar Program and the MOSAIC initiative of Johns Hopkins University.

Chilton has a financial interest in and is a consultant for Gene Smart Health. His potential conflict of interest is being institutionally managed by Wake Forest Baptist and outside sponsors, as appropriate. No other authors have a conflict of interest.

First author is Rasika Mathias, Sc.D, assistant professor of medicine and epidemiology, Johns Hopkins; contributing authors include Hannah C. Ainsworth and Susan Sergeant, both of Wake Forest Baptist; Wenqing Fu, U of W; Dara G. Torgerson, University of California San Francisco; and Ingo Ruczinski and Kathleen C. Barnes of Johns Hopkins.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Wake Forest Baptist Medical Center.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Rasika A. Mathias, Wenqing Fu, Joshua M. Akey, Hannah C. Ainsworth, Dara G. Torgerson, Ingo Ruczinski, Susan Sergeant, Kathleen C. Barnes, Floyd H. Chilton. Adaptive Evolution of the FADS Gene Cluster within Africa. PLoS ONE, 2012; 7 (9): e44926 DOI: 10.1371/journal.pone.0044926

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/f3Gwsp1GeEI/120919190100.htm
--
Manage subscription | Powered by rssforward.com
17.23 | 0 komentar | Read More

Climate scientists put predictions to the test

ScienceDaily (Sep. 19, 2012) — Climate-prediction models show skills in forecasting climate trends over time spans of greater than 30 years and at the geographical scale of continents, but they deteriorate when applied to shorter time frames and smaller geographical regions, a new study has found.

Published in the Journal of Geophysical Research-Atmospheres, the study is one of the first to systematically address a longstanding, fundamental question asked not only by climate scientists and weather forecasters, but the public as well: How good are Earth system models at predicting the surface air temperature trend at different geographical and time scales?

Xubin Zeng, a professor in the University of Arizona department of atmospheric sciences who leads a research group evaluating and developing climate models, said the goal of the study was to bridge the communities of climate scientists and weather forecasters, who sometimes disagree with respect to climate change.

According to Zeng, who directs the UA Climate Dynamics and Hydrometeorology Center, the weather forecasting community has demonstrated skill and progress in predicting the weather up to about two weeks into the future, whereas the track record has remained less clear in the climate science community tasked with identifying long-term trends for the global climate.

"Without such a track record, how can the community trust the climate projections we make for the future?" said Zeng, who serves on the Board on Atmospheric Sciences and Climate of the National Academies and the Executive Committee of the American Meteorological Society. "Our results show that actually both sides' arguments are valid to a certain degree."

"Climate scientists are correct because we do show that on the continental scale, and for time scales of three decades or more, climate models indeed show predictive skills. But when it comes to predicting the climate for a certain area over the next 10 or 20 years, our models can't do it."

To test how accurately various computer-based climate prediction models can turn data into predictions, Zeng's group used the "hindcast" approach.

"Ideally, you would use the models to make predictions now, and then come back in say, 40 years and see how the predictions compare to the actual climate at that time," said Zeng. "But obviously we can't wait that long. Policymakers need information to make decisions now, which in turn will affect the climate 40 years from now."

Zeng's group evaluated seven computer simulation models used to compile the reports that the Intergovernmental Panel on Climate Change, or IPCC, issues every six years. The researchers fed them historical climate records and compared their results to the actual climate change observed between then and now.

"We wanted to know at what scales are the climate models the IPCC uses reliable," said Koichi Sakaguchi, a doctoral student in Zeng's group who led the study. "These models considered the interactions between the Earth's surface and atmosphere in both hemispheres, across all continents and oceans and how they are coupled."

Zeng said the study should help the community establish a track record whose accuracy in predicting future climate trends can be assessed as more comprehensive climate data become available.

"Our goal was to provide climate modeling centers across the world with a baseline they can use every year as they go forward," Zeng added. "It is important to keep in mind that we talk about climate hindcast starting from 1880. Today, we have much more observational data. If you start your prediction from today for the next 30 years, you might have a higher prediction skill, even though that hasn't been proven yet."

The skill of a climate model depends on three criteria at a minimum, Zeng explained. The model has to use reliable data, its prediction must be better than a prediction based on chance, and its prediction must be closer to reality than a prediction that only considers the internal climate variability of the Earth system and ignores processes such as variations in solar activity, volcanic eruptions, greenhouse gas emissions from fossil fuel burning and land-use change, for example urbanization and deforestation.

"If a model doesn't meet those three criteria, it can still predict something but it cannot claim to have skill," Zeng said.

According to Zeng, global temperatures have increased in the past century by about 1.4 degrees Fahrenheit or 0.8 degrees Celsius on average. Barring any efforts to curb global warming from greenhouse gas emissions, the temperatures could further increase by about 4.5 degrees Fahrenheit (2.5 degrees Celsius) or more by the end of the 21st century based on these climate models.

"The scientific community is pushing policymakers to avoid the increase of temperatures by more than 2 degrees Celsius because we feel that once this threshold is crossed, global warming could be damaging to many regions," he said.

Zeng said that climate models represent the current understanding of the factors influencing climate, and then translate those factors into computer code and integrate their interactions into the future.

"The models include most of the things we know," he explained, "such as wind, solar radiation, turbulence mixing in the atmosphere, clouds, precipitation and aerosols, which are tiny particles suspended in the air, surface moisture and ocean currents."

Zeng described how the group did the analysis: "With any given model, we evaluated climate predictions from 1900 into the future -- 10 years, 20 years, 30 years, 40 years, 50 years. Then we did the same starting in 1901, then 1902 and so forth, and applied statistics to the results."

Climate models divide the Earth into grid boxes whose size determines its spatial resolution. According to Zeng, state of the art is about one degree, equaling about 60 miles (100 kilometers).

"There has to be a simplification because if you look outside the window, you realize you don't typically have a cloud cover that measures 60 miles by 60 miles. The models cannot reflect that kind of resolution. That's why we have all those uncertainties in climate prediction."

"Our analysis confirmed what we expected from last IPCC report in 2007," said Sakaguchi. "Those climate models are believed to be of good skill on large scales, for example predicting temperature trends over several decades, and we confirmed that by showing that the models work well for time spans longer than 30 years and across geographical scales spanning 30 degrees or more."

The scientists pointed out that although the IPCC issues a new report every six years, they didn't see much change with regard to the prediction skill of the different models.

"The IPCC process is driven by international agreements and politics," Zeng said. "But in science, we are not expected to make major progress in just six years. We have made a lot of progress in understanding certain processes, for example airborne dust and other small particles emitted from surface, either through human activity or through natural sources into the air. But climate and the Earth system still are extremely complex. Better understanding doesn't necessarily translate into better skill in a short time."

"Once you go into details, you realize that for some decades, models are doing a much better job than for some other decades. That is because our models are only as good as our understanding of the natural processes, and there is a lot we don't understand."

Michael Brunke, a graduate student in Zeng's group who focused on ocean-atmosphere interactions, co-authored the study, which is titled "The Hindcast Skill of the CMIP Ensembles for the Surface Air Temperature Trend."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of Arizona, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Koichi Sakaguchi, Xubin Zeng, Michael A. Brunke. The hindcast skill of the CMIP ensembles for the surface air temperature trend. Journal of Geophysical Research, 2012; 117 (D16) DOI: 10.1029/2012JD017765

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/sukhH77CoeI/120919191216.htm
--
Manage subscription | Powered by rssforward.com
17.23 | 0 komentar | Read More

Ancient tooth may provide evidence of early human dentistry

ScienceDaily (Sep. 19, 2012) — Researchers may have uncovered new evidence of ancient dentistry in the form of a 6,500-year-old human jaw bone with a tooth showing traces of beeswax filling, as reported Sept. 19 in the open access journal PLOS ONE.

The researchers, led by Federico Bernardini and Claudio Tuniz of the Abdus Salam International Centre for Theoretical Physics in Italy in cooperation with Sincrotrone Trieste and other institutions, write that the beeswax was applied around the time of the individual's death, but cannot confirm whether it was shortly before or after. If it was before death, however, they write that it was likely intended to reduce pain and sensitivity from a vertical crack in the enamel and dentin layers of the tooth.

According to Tuniz, the severe wear of the tooth "is probably also due to its use in non-alimentary activities, possibly such as weaving, generally performed by Neolithic females."

Evidence of prehistoric dentistry is sparse, so this new specimen, found in Slovenia near Trieste, may help provide insight into early dental practices.

"This finding is perhaps the most ancient evidence of pre-historic dentistry in Europe and the earliest known direct example of therapeutic-palliative dental filling so far," says Bernardini.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by Public Library of Science.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Federico Bernardini, Claudio Tuniz, Alfredo Coppa, Lucia Mancini, Diego Dreossi, Diane Eichert, Gianluca Turco, Matteo Biasotto, Filippo Terrasi, Nicola De Cesare, Quan Hua, Vladimir Levchenko. Beeswax as Dental Filling on a Neolithic Human Tooth. PLoS ONE, 2012; 7 (9): e44904 DOI: 10.1371/journal.pone.0044904

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

20 Sep, 2012


-
Source: http://feeds.sciencedaily.com/~r/sciencedaily/top_news/top_environment/~3/I6wEAOnI_fc/120919190920.htm
--
Manage subscription | Powered by rssforward.com
16.55 | 0 komentar | Read More
Techie Blogger